Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 30

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Status of LBE study and experimental plan at JAEA

Saito, Shigeru; Wan, T.*; Okubo, Nariaki; Obayashi, Hironari; Watanabe, Nao; Ohdaira, Naoya*; Kinoshita, Hidetaka; Yamaki, Kenichi*; Kita, Satoshi*; Yoshimoto, Hidemitsu*; et al.

JPS Conference Proceedings (Internet), 33, p.011041_1 - 011041_6, 2021/03

An Accelerator Driven System (ADS) for waste transmutation investigated in JAEA employs lead-bismuth eutectic (LBE) as a neutron production target material and coolant. The neutrons are to be produced via the spallation with 1.5 GeV proton beam injection. As materials irradiation data are important for ADS development, JAEA plans to construct an irradiation facility with LBE neutron production target in J-PARC. There are many technical issues on LBE for practical use. In JAEA, various R&Ds are being carried out. Concerning corrosion study, conditioning operation and functional tests of OLLOCHI started. Oxygen concentration control technology has also developing. In the large scale LBE loop experiment, the operation for steady state and transient experiments was performed by using IMMORTAL. In the area of instrument, development of ultrasonic flow meter and freeze seal valve are progressing as a key technology for the LBE loop system. Investigation of behavior of impurities in LBE, which is important for design of the irradiation facility, started. In this paper, the status of the LBE studies and experimental plan will be presented.

Journal Articles

250 kW LBE spallation target for ADS development in J-PARC

Sasa, Toshinobu; Saito, Shigeru; Obayashi, Hironari; Ariyoshi, Gen

JPS Conference Proceedings (Internet), 33, p.011051_1 - 011051_6, 2021/03

To realize Accelerator-driven system (ADS) for minor actinide transmutation, JAEA proposes to construct the Proton Irradiation Facility in J-PARC. The facility is planned to solve technical issues for safe application of Lead-bismuth Eutectic Alloy (LBE). The 250 kW LBE spallation target will be located in the facility to prepare material irradiation database by both proton and neutron irradiation in the temperature range for typical LBE-cooled ADS. Various studies for important technologies required to build the facilities are investigated such as oxygen concentration control, instruments development, remote handling techniques for target maintenance, and spallation target design. The large scale LBE loops for mock up the 250 kW LBE spallation target and material corrosion studies are also manufactured and applied to various experiments. The latest status of 250 kW LBE spallation target design works will be summarized.

Journal Articles

Status of development of Lithium Target Facility in IFMIF/EVEDA project

Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Hirakawa, Yasushi; Furukawa, Tomohiro; Hoashi, Eiji*; Fukada, Satoshi*; Suzuki, Akihiro*; Yagi, Juro*; Tsuji, Yoshiyuki*; et al.

Proceedings of Plasma Conference 2014 (PLASMA 2014) (CD-ROM), 2 Pages, 2014/11

In the IFMIF/EVEDA (International Fusion Materials Irradiation Facility/ Engineering Validation and Engineering Design Activity), the validation tests of the EVEDA lithium test loop with the world's highest flow rate of 3000 L/min was succeeded in generating a 100 mm-wide and 25 mm-thick free-surface lithium flow steadily under the IFMIF operation condition of a high-speed of 15 m/s at 250$$^{circ}$$C in a vacuum of 10 $$^{-3}$$ Pa. Some excellent results of the recent engineering validations including lithium purification, lithium safety, and remote handling technique were obtained, and the engineering design of lithium facility was also evaluated. These results will advance greatly the development of an accelerator-based neutron source to simulate the fusion reactor materials irradiation environment as an important key technology for the development of fusion reactor materials.

Journal Articles

Present status of the high current prototype accelerator for IFMIF/EVEDA

Okumura, Yoshikazu

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.194 - 198, 2014/10

International Fusion Materials Irradiation Facility (IFMIF) is one of the major facilities in fusion program to irradiate and characterize the fusion materials under intense neutron field. Under the framework of Broader Approach (BA) agreement between Japan and Euratom, Engineering Validation and Engineering Design Activities (EVEDA) launched in 2007 in Japan to validate the key technologies to realize IFMIF. The most critical technology to realize IFMIF is two set of linear accelerators each producing 125mA/CW deuterium ion beams up to 40MeV. The prototype accelerator being developed in EVEDA consists of an injector, a RFQ accelerator, and a superconducting linac, whose target is to produce 125mA/CW deuterium ion beams up to 9MeV. The injector has been delivered to International Fusion Energy Research Center (IFERC) in Rokkasho, Japan, where all the accelerator components will be assembled and operated to validate the accelerator technologies required for IFMIF.

Journal Articles

Estimation of radioactivities in the IFMIF liquid lithium loop due to the erosion and corrosion of target back-wall

Yamauchi, Michinori*; Takemura, Morio*; Nakamura, Hiroo; Fischer, U.*; Ida, Mizuho*; Mori, Seiji*; Sato, Satoshi; Nishitani, Takeo; Simakov, S. P.*; Sugimoto, Masayoshi

Fusion Science and Technology, 47(4), p.1008 - 1011, 2005/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Conceptual study of transmutation experimental facility, 2; Study on ADS target test facility

Sasa, Toshinobu; Umeno, Makoto*; Mizubayashi, Hiroshi*; Mori, Keijiro*; Futakawa, Masatoshi; Saito, Shigeru; Kai, Tetsuya; Nakai, Kimikazu*; Zako, Akira*; Kasahara, Yoshiyuki*; et al.

JAERI-Tech 2005-021, 114 Pages, 2005/03

JAERI-Tech-2005-021.pdf:9.66MB

To perform the research and development for accelerator-driven system (ADS), Japan Atomic Energy Research Institute (JAERI) plans to build a Transmutation Experimental Facility under the JAERI-KEK joint J-PARC program. Transmutation Experimental Facility consists of two buildings, Transmutation Physics Experimental Facility to make reactor physics experiment with subcritical core, and ADS Target Test Facility for the preparation of irradiation database for various structural materials. In this report, purpose to build, experimental schedule, and design study of the ADS target test facility with drawer type spallation target are summarized.

Journal Articles

Issues to be verified by IFMIF prototype accelerator for engineering validation

Sugimoto, Masayoshi; Imai, Tsuyoshi; Okumura, Yoshikazu; Nakayama, Koichi*; Suzuki, Shohei*; Saigusa, Mikio*

Journal of Nuclear Materials, 307-311(Part2), p.1691 - 1695, 2002/12

 Times Cited Count:2 Percentile:17.03(Materials Science, Multidisciplinary)

International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based intense neutron source for fusion reactor materials development. Each one of the two accelerator modules needs to have a capability to provide the 40MeV/125mA deuteron beam continuously. Although the technology to produce the 7MeV/100mA proton beam is already verified using 350 MHz linac in the past, an engineering study using a prototype is necessary to verify the performance of IFMIF 175 MHz deuteron linac, and Engineering Validation Phase (EVP) is planned for this purpose. Some critical design parameters, like final and transition energies of linacs or RF source characteristics, are needed to be optimised for the prototype. As it is also important to verify the essential component technology, e.g. ion source, RFQ beam matching, rf system components, etc., the present status and expected results of such undergoing verification tests are described. An integrated concept of prototype accelerator is shown as a Japanese proposal for EVP to provide for the international discussion.

Journal Articles

Development of the I-I type irradiation equipment for the HTTR

Shibata, Taiju; Kikuchi, Takayuki; Miyamoto, Satoshi*; Ogura, Kazutomo*; Ishigaki, Yoshinobu*

FAPIG, (161), p.3 - 7, 2002/07

no abstracts in English

Journal Articles

Experiment for accelerator-driven transmutation

Oigawa, Hiroyuki

Nihon Butsuri Gakkai-Shi, 56(10), p.749 - 754, 2001/11

no abstracts in English

Journal Articles

Journal Articles

International strategy for fusion materials development

Ehrlich, K.*; Bloom, E. E.*; Kondo, Tatsuo

Journal of Nuclear Materials, 283-287(1), p.79 - 88, 2000/12

 Times Cited Count:86 Percentile:97.75(Materials Science, Multidisciplinary)

no abstracts in English

JAEA Reports

IFMIF international fusion materials irradiation facility key element technology phase task description

Fusion Neutron Laboratory

JAERI-Tech 2000-052, 110 Pages, 2000/08

JAERI-Tech-2000-052.pdf:5.31MB

no abstracts in English

JAEA Reports

Irradiation tests report of the 34th cycle in "JOYO"

*

JNC TN9440 2000-005, 164 Pages, 2000/06

JNC-TN9440-2000-005.pdf:4.51MB

This report summarizes the operating and irradiation data of the experimental reactor "JOYO" 34th cycle, and estimates the 35th cycle irradiation condition. Irradiation tests in the 34th cycle are as follows: (1)C-type irradiation rig (C4F) (a)High burnup perfomance test of advanced austenitic stainless steel cladding fuel pins (in collaboration with France) (2)C-type irradiation rig (C6D) (a)Large diameter fuel pins irradiation tests (3)Absorber Materials Irradiation Rig (AMIR-6) (a)Run to absorber pin's cladding breach (4)Core Materials Irradiation Rig (CMIR-5) (a)Cladding tube materials irradiation tests for "MONJU" (5)Structure Materials Irradiation Rigs (SMIR) (a)Decision of material design base standard of structure materials for prototype reactor and large reactor (6)Upper core structure irradiation Plug Rig (UPR-1-5) (a)Upper core neutron spectrum effect and accelerated irradiation effect (7)SurVeillance un-instrument Irradiation Rig (SVIR) (a)Confirmation of surveillance irradiation condition for "JOYO" (b)Material irradiation tests (in collaboration with universities) The maximum burnup driver assembly "PFD537" reached 68,500MWd/t(pin average).

JAEA Reports

Irradiation tests report of the 33rd cycle in "JOYO"

*

JNC TN9440 2000-002, 157 Pages, 2000/02

JNC-TN9440-2000-002.pdf:5.44MB

This report summarizes the operating and irradiation data of the experimental reactor "JOYO" 33rd cycle, and estimates the 34th cycle irradiation condition. Irradiation tests in the 33rd cycle are as follows: (1)B-type irradiation rig (B9) (a)High burn up performance tests of "MONJU" fuel pins, advanced austenitic steel cladding fuel pins, large diameter fuel pins, ferrite steel cladding fuel pins and large diameter annular pellet fuel pins (b)Mixed carbide and nitride fuel pins irradiation tests (in collaboration with JAERI) (2)C-type irradiation rig (C4F) (a)High burn up performance test of advanced austenitic stainless steel cladding fuel pins (in collaboration with France) (3)C-type irradiation rig (C6D) (a)Large diameter fuel pins irradiation tests (4)Absorber Materials Irradiation Rig (AMIR-6) (a)Run to absorber pin's cladding breach (5)Core Materials Irradiation Rig (CMIR-5) (a)Cladding tube materials irradiation tests for "MONJU" (6)Core Materials Irradiation Rig (CMIR-5-1) (a)Core materials irradiation tests (7)Structure Materials Irradiation Rigs(SMIR) (a)Material irradiation tests (in collaboration with universities) (b)Surveillance back up tests for "MONJU" (8)Upper core structure Irradiation Plug Rig (UPR-1-5) (a)Upper core neutron spectrum effect and accelerated irradiation effect. The maximum burnup driver assembly "PFD516" reached 64,300MWd/t (pin average).

Journal Articles

Development of high intensity deuteron ion source for fusion intense neutron source

Kinsho, Michikazu; Sugimoto, Masayoshi; Seki, Masakazu; Oguri, Hidetomo; Okumura, Yoshikazu

Review of Scientific Instruments, 71(2), p.963 - 965, 2000/02

 Times Cited Count:1 Percentile:20.05(Instruments & Instrumentation)

no abstracts in English

JAEA Reports

Irradiation creep equation of the advanced austenitic stainless steels

Mizuta, Shunji; ;

JNC TN9400 99-082, 60 Pages, 1999/10

JNC-TN9400-99-082.pdf:1.52MB

The density measurement of the internal creep specimens irradiated in FFTF/MOTA (Fast Flux Test Facility / Material open Test Assembly) was conducted MMF (Materia1 Monitoring Facility) and accurate separation of swelling strain from total strain leaded in the derivation of the irradiation creep coefficients. Irradiation creep coefficients for PNC 316, 15Cr-20Ni base S.S. and 14Cr-25Ni base S.S. were systematically expressed, while thermal creep coefficients K, under irradiation were separately expressed for above three steels. The results obtained are follows, (1)The effect of stress induced swelling was recognized in the temperature range from 405 to 605$$^{circ}$$C. The swelling in high stress specimens have a tendency to increasing swelling. (2)The irradiation creep coefficients derived from PNC316 and l5Cr-20Ni are similar to that of derived from 20%CW316S.S., CW316Ti and CW15-15Ti which were reported by other authors. (3)The irradiation creep coefficient derived from gas pressurized tube irradiation using FFTF/MOTA expressed appropriately irradiation creep strain from fuel pins using FFTF/MFA-2(15Cr-2ONi base S.S.).

Journal Articles

Accelerator conceptual design of the international fusion materials irradiation facility (IFMIF)

Sugimoto, Masayoshi

Proc. of the 20th Linear Accelerator Meeting in Japan, 0, p.97 - 99, 1995/00

no abstracts in English

JAEA Reports

None

*

PNC TN9360 93-002, 116 Pages, 1993/11

PNC-TN9360-93-002.pdf:5.14MB

no abstracts in English

JAEA Reports

None

*

PNC TN9360 93-001, 120 Pages, 1993/06

PNC-TN9360-93-001.pdf:5.08MB

no abstracts in English

Journal Articles

The Status and prospects of high-energy neutron test facilities for fusion materials development

Kondo, Tatsuo; D.G.Doran*; K.Ehrlich*; F.W.Wiffen*

Journal of Nuclear Materials, 191-194, p.100 - 107, 1992/00

no abstracts in English

30 (Records 1-20 displayed on this page)